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Abstract— We present a model-based approach for plan-
ning primitive manipulations with pre-defined environmental
contact(s). Given the environmental contact(s) and a set of
available robot contacts, our framework finds contact-location
and contact-force trajectories that drive the object from its
current pose to the goal. We efficiently solve the underlying
mixed-integer non-linear program (MI-NLP) by developing a
model that separates the mixed-integer and non-linear portions
of the mechanics. We then design an iterative-lqr (iLQR)
based algorithm that exploits this structure to find the contact-
location trajectory during the backward pass and then solve
for the contact-forces and corresponding object poses in the
forward pass. We apply our approach to several well-known
manipulation primitives, including grasping, pushing, pulling,
and pivoting, and find that our algorithm can efficiently (in 1s
to 6s) plan pose-to-pose object manipulations.

I. INTRODUCTION

The ability to autonomously manipulate objects will be
critical to successful on-orbit robotic assembly and satellite
repair. Here we focus on planning object manipulations by
sequencing manipulation primitives. Complex manipulations,
such as adding a component to an existing structure during
an assembly task, can often be decomposed into a sequence
of simpler (primitive) behaviors. Fig. 1 shows one possible
primitive sequence for an assembly task: pulling the object
along the structure’s surface, pivoting the object to align it
correctly, and then pushing it into the desired location.

One key feature of the three primitives described above
is the existence of a fixed or pre-defined environmental
contact. Indeed, many well-known manipulation primitives,
including grasping [1], pulling [2], pushing [3], and pivoting
[4] embody this idea. Based on this observation, we develop
a model to describe the mechanics of robots manipulating
objects with pre-defined environmental contacts. Our model
allows for both robot and environmental contacts to have
point, line, or patch geometry, and the environmental contacts
can either stick or slide. More importantly, we identify that
our model is non-linear, but continuous, in the object’s pose
and is hybrid, but affine, in contact forces. This enables
the design of an iterative-Iqr (iLQR) based algorithm that
exploits this structure for efficient planning.

II. MANIPULATION WITH PRE-DEFINED CONTACTS

We first present a model for manipulations such as those
shown in Fig. 1. Our model is based on the following (fairly
standard) implicit assumptions: known (polygonal) geometry
of the object and contacts, known coefficients of friction,
rigid-body interaction, quasi-static interaction, Coulomb’s
frictional laws, and full object state feedback. In addition
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Fig. 1. Inserting a part into an existing structure by sequencing three
manipulation primitives with fixed environmental contacts: a pull, a pivot,
and a push.

we ask the user to pre-define environmental contacts and a
set of available robot contacts. For example, in the Sagittal
pivoting primitive (Fig. 1, middle panel), the user specifies
that the object makes a point contact with the ground on one
corner and available robot contacts could be located at the
other three corners of the object. Note, that the user could
have just as easily chosen the available robot contacts as lines
on the other three sides of the object. Given these assump-
tions, a quasi-static model for this manipulation consists of
the following four components: a forward-model (1), static
equilibrium constraints (2), friction-cone constraints (3), and
kinematic constraints imposed by the environmental contacts
(4). More formally, the model is described by following set
of hybrid differential algebraic equations:
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Here q is the object’s pose, v is the object’s velocity, R(q;) is
the rotation from body to world frame, Az is the time-step,
Wext 18 the external (gravitational) wrench, and wg are the
wrenches applied at the k-th contact (robot or environmental).
Note that while (1) is independent of the of the mode (m),
equations (2)-(4) vary with m. The mode defines both the set
of active contacts and their state (e.g., sticking or siding). In
the Sagittal pivoting example from Fig. 1, the mode j =1
might correspond to “top and right robot contacts active and
sticking and environmental contact sliding left. This would
then effect the active contacts and the kinematic constraints
imposed on the object’s velocity.

The linearity with respect to the contact wrench in (3)
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Fig. 2.  Representative object-state, contact-location, and contact-force

trajectories for the Sagittal pushing primitive. The object moves from the
initial condition (lightest gray on the right) to the goal (black on the left).

is achieved by taking a polygonal approximation of the
friction cone [5] and approximating line and patch contacts
with collections of points [6]. Moreover, the linearity with
respect to the object-velocity in (4) is achieved by treating
each sliding boundary of the polygonal wrench-cone as a
separate mode. Finally, note that the forward model (1) is
continuous in both the state (q) and input (v, A¢, and w) and
the constraints (2) are affine in the input.

III. HYBRID ILQR

Our planner extends the idea of iterative LQR (iLQR) with
strong variations [7], [8] (i.e., large variations in input) to
the types of systems described in Section II. We rewrite the
model developed above as
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where (5) is the forward model and (6) represents the
constraints (2)-(4). Note here that x = q and u is the
concatenation of v, Az, and wy. Given a one-step cost /(x;, u;)
and final cost /;(Xy), the optimal cost from a given state can
be defined recursively via Bellman’s equation
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with the boundary condition VY = I¢(xy). Note here we are
minimizing over both the continuous input u; and the mode
m;; however, we only need to make minor modifications
to the standard iLQR algorithm as (5) is smooth in u. In
particular, we use iLQR with strong variations and only
expand (7) about a nominal state. This ability to apply
larger variations in input allows us to search across different
modes during the backwards pass. Moreover, by leveraging
the control affine structure of both (5) and (6), we can still
efficiently solve for a cost-improving mode and input.

Here we present an expansion of (7) about a nominal
state (X;) derived by taking a quadratic expansion of / and
substituting a linear approximation of the forward dynamics
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Note that the expression for expansion coefficients are omit-
ted for brevity. We can now perform the minimization in (8)
subject to the constraints in (6). This amounts to solving a
small mixed-integer quadratic program (MIQP) to find both
the mode (m;) and continuous inputs (u;) that minimize the
local approximation of (7). Substituting this back into (8)
and performing some algebra, we get:
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We can now start at the terminal step i = N, with yN =
I(xn). Integrating (9)-(11) constitutes a backwards pass of
our approach, and the forward pass can then be conducted
as follows:
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where K’ is defined as in [9], %; and @i; form the trajectory for
the next iteration of the algorithm. Note that details related
to line-searching and regularization are omitted for brevity.

IV. SIMULATED EXAMPLES

Here we use our algorithm to plan trajectories for the
primitives shown in Fig. 1. A representative trajectory for
the Sagittal pivoting primitive is shown in Fig. 2. We plan
over a N = 20 step horizon, and at each step the planner
chooses the location of two active robot contacts and the
state of the environmental contact (nine hybrid modes). The
algorithm both finds the contact locations and forces that
drive the object to the goal in ~6.5s. We are also able to
efficiently plan 20 step trajectories for the other three prim-
itives from Fig. 1: Sagittal pushing (six modes), horizontal
pushing (four modes), and horizontal pulling (six modes).
The planning times for those trajectories are ~3s, ~1.75s,
and ~2.25s, respectively. In our current implementation, the
computational complexity per iteration is dominated by the
MIQPs and scales with pN, where p is the number of modes
and N is the planning horizon.

V. CONCLUSIONS

In summary, we introduce an approach for planning finite-
horizon object-state, contact-location, and contact-force tra-
jectories for manipulations with fixed environmental con-
tacts. Our approach consists of developing a quasi-static
model of these manipulation that exposes underlying struc-
ture which is then leveraged by our planner, a hybrid
extension to iLQR with strong variations.
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