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Abstract— This paper presents a non-linear, dynamic model
of the flexure-based transmission in the Harvard Ambulatory
Microrobot (HAMR). The model is derived from first principles
and has led to a more comprehensive understanding of the
components in this transmission. In particular, an empirical
model of the dynamic properties of the compliant Kapton flex-
ures is developed and verified against theoretical results from
beam and vibration theory. Furthermore, the fabrication of
the piezoelectric bending actuators that drive the transmission
is improved to match theoretical performance predictions. The
transmission model is validated against experimental data taken
on HAMR for the quasi-static (1-10 Hz) operating mode, and
is used to redesign the transmission for improved performance
in this regime. The model based redesign results in a 266%
increase in the work done by the foot when compared to a
previous version of HAMR. This leads to a payload capacity
of 2.9g, which is ∼ 2× the robot’s mass and a 114% increase.
Finally, the model is validated in the dynamic regime (40-150
Hz) and the merits of a second order linear approximation are
discussed.

Index Terms— Dynamic models, Legged microrobots, Bi-
ologically Inspired Robots, Compliant Flexures, Piezoeletric
actuators

I. INTRODUCTION

Recent advances in the manufacturing of articulated,
millimeter-scale structures in [1] has enabled the develop-
ment of highly complex, dynamic insect-scale robots. Exem-
plary devices include flapping wing micro air vehicles [2],
and legged robots that are capable of high speed locomotion
[3], turning [4], climbing [5], and obstacle traversal [6].

Research in legged robots at larger scales utilize dynamic
models ([7],[8],[9],[10]) to demonstrate even greater capabil-
ities in running and climbing ([11],[12]). This is in part due
to the accurate understanding of the individual components
(e.g. motors, springs, bearings, etc).

However, only quasi-static models (e.g., powertrain se-
lection in [13]) exist for insect-scale crawling robots. This
is due to the complexity of the transmission used to map
the motion of the actuators to the leg, unknown dynamic
properties (stiffness and damping) of the compliant flexures
used as joints in these robots, and a poor understanding of
the piezoelectric actuators relative to electromagnetic motors.
One exception is the hybrid-dynamic model developed in
[4] to understand the behavior of an underactuated centipede
inspired millirobot. This model, however, does not capture
the dynamics of the robot near its resonance and was only
validated in the quasi-static regime.

Due to the complexity of the devices designed using the
PC-MEMS process [1], better models are needed to allow
for faster and more informed design iterations. Models de-
veloped from first principles provide insight into the behavior

of the components of the system – in this case the compliant
flexures and actuators – and increase the ability to model
systems that utilize similar materials and manufacturing
techniques.

More specifically to the insect-scale crawling robot de-
scribed in this paper, a dynamic model can further improve
the speed, climbing and efficiency by being able to sim-
ulate device operation and predict system behavior. These
performance metrics are important for potential applications
in search and rescue, hazardous environment exploration, and
inspection tasks well suited for insect-scale robots.

This paper outlines a method for modeling flexure based
microrobots using the transmission of the Harvard Ambula-
tory Microrobot (HAMR) as an example. In section II we
describe the structure of the model, and in sections III and
IV we discuss lumped parameter models for the actuators
and compliant flexures respectively. We verify the model in
the quasi-static regime (1 − 10 Hz) and use the model to
redesign the transmission for improved performance at low
frequencies in section V. Model predictions are also com-
pared with the dynamic behavior of the robot’s transmission
in section VI.

II. MODEL OF TRANSMISSION

A dynamic model of HAMR’s transmission is developed
in MotionGenesis [14], a symbolic software that numerically
solves the dynamics of physical systems. Fig. 1 shows the
linkages of the transmission and definitions used in the
model. The model has two inputs and two states: the blocked
forces (inputs) and deflections (states) of the lift and swing
actuators: F lb , F sb , δl, and δs. Fb is the blocked force, δ is
the deflection, and the superscripts l and s indicate lift and
swing actuators, respectively. The lift and swing actuators
are optimal energy density piezoelectric bending actuators
described in [15] and more recently characterized in [16].
Each actuator is modeled as a force source (Fb) in parallel
with a serial stiffness (ka) as in [15]. The determination of
F
{s,l}
b and k

{s,l}
a is explained in section III and is shown

to follow the model presented in [16] after a number of
design iterations. The effective mass and damping of the
actuator as discussed in [17] were initially incorporated in the
model but were found to be negligible. Lower transmission
ratios coupled with high operational frequencies, however
will likely require actuator mass effects to be reconsidered.

The model has two output degrees of freedom (DOFs):
the position of the leg tip in the z and x directions (dl
and ds, respectively). The deflection of the actuator tip is
linearized by a compliant Kapton flexure. The crank-sliders
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Fig. 1. Model of the HAMR transmission in isometric (a), lift/front (b), and swing/top (c) perspectives. Actuator deflection is mapped to the leg )orange)
through a crank-slider mechanism, shown in pink for the lift and blue for the swing. The green spherical five-bar serves to decouple the two inputs: the
lift actuator controlling z motion and the swing actuator controlling x motion. Full body Solidworks model shown in top left corner.

(pink and blue) convert the linearized motion of the actuators
to a rotary motion and amplify the actuator displacement by
the transmission ratio T ∗l = l0/li for lift and T ∗s = s0/si
for swing. However, since only the z component of the lift
output is useful, we redefine the lift transmission ratio to
be Tl = s0/li. The swing transmission ratio Ts is the same
as T ∗s . As investigated in [18], the spherical five-bar (SFB)
allows the system to be analyzed as two separate single-input,
single-output systems in the quasi-static regime.

The crank-sliders and the SFB are two parallel linkages
comprised of eleven rigid bodies connected to each other
and mechanical ground via nine compliant Kapton flexures.
Each rigid body is assigned physical dimensions, a mass, an
inertia, and a center of mass position in its local frame. These
quantities were determined using a Solidworks model with
mass properties and dimensions informed by measurements
taken on the HAMR. The Kapton flexures are modeled as
one-dimensional pin joints as in [19]. They are assumed to
be loaded in pure bending, and their dynamic properties
are described by a torsional stiffness and damping. The
stiffness and damping for these flexures is determined using a
combination of beam theory and experimentally determined

equations, discussed in section IV.
Kane’s method was used to write the equations of motion

for HAMR’s transmission in MotionGenesis. The velocity
of the actuators, δ̇l and δ̇s, were defined as the generalized
velocities and nine kinematic equations (defined in Appendix
A) were derived to constrain the position and velocities
of the nine DOFs introduced by the Kapton flexures in
terms of δl, δs, and the generalized velocities. Equations
(9) and (10) define ψl2 and ψs2, the angular deflections
of flexures l2 and s2, respectively. Two more equations
(11) enforce the loop constraint for the lift crank-slider by
defining the position of the flexure l2 that rotates by ψl2
to be the same when approached from mechanical ground
on the transmission (G1) or the actuator (G2). Two more
equations (12) enforce the loop constraint for the swing
crank-slider in the same manner. The last three equations (13-
15) are the loop constraint for the SFB. These are enforced by
constraining the orientation of a virtual frame [v̂x, v̂y, v̂z](not
depicted) that undergoes rotations by ψs3, ψfb1, ψfb2, ψfb3,
and ψl3 to be the same as the orientation of the Newtonian
frame (i.e. mechanical ground).

Given this information, MotionGenesis numerically in-
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Fig. 2. Piezoelectric actuator energy curve when driven at 225V (left).
Images of three different actuator versions compared in this section and
relevant geometric parameters (right).
∗ indicates that values are peak one-way.

TABLE I
ACTUATOR PARAMETERS

Parameter Old Geometry New Geometry
PZT Thickness (µm) 135 135
CF Thickness (µm) 110 55
PZT Length (mm) 8.8 9.2

Nominal Width (mm) 4.2 3.5
Extension Length (mm) 0.8 1

Width Ratio 1.5 1.5
δf (µm) 184∗, 219± 5.6† 300∗, 314± 6.9†

Fb (mN) 549∗, 500± 10.7† 320∗, 320± 4.4†

Du (J/kg) 0.46∗, 0.50±0.02† 0.52∗, 0.54±0.01†
∗Based on the model in [16].
†Mean experimental measurements ±s.d. with n=4 at 225V drive

tegrates the dynamics of the transmission from a valid
kinematic state, which is determined by solving the non-
linear constraints given values of δl, δs, δ̇l, and δ̇s.

III. ACTUATORS

The design of the actuators used in HAMR-VP [13] is
improved to increase performance and match the theory
presented in [16]. Matching the model in [16] allows for
accurate estimates of F {s,l}b and k{s,l}a which enables rapid
iterations on actuator design without fabrication and testing.

Two manufacturing methods, ‘pick and place’ (PNP) and
‘pre-stacked’ (PS), for piezoelectric actuators are compared
to improve the energy density of the actuators. The PNP
method cures the composite actuator after the raw materials
are individually machined. The PS method described in [16]
machines the actuator geometry after curing a bulk actuator
composite laminate. The baseline geometry used for the
actuators is from Ozcan et al. and is shown in Table I.

The free deflection and blocked force are measured using
a 225V peak-to-peak sinusoidal drive signal at a frequency of
1Hz. The amplitude and frequency is chosen for convenience
of analysis as it has been shown in [16] that blocked force
scales approximately linearly with voltage in our operating
regime (50− 225 V) and is approximately constant over the

TABLE II
SUMMARY OF ACTUATOR PERFORMANCE METRICS

ma
(mg)

δf
(µm)∗

Fb
(mN)∗

Du
(J/kg)

sample
size

PNP† from [13] 96 200 200 0.21 n/a
PNP† ‘a’ 100 234 259 0.32 n=4
PS‡ ‘a’ 100 247 270 0.35 n=4
PS‡ ‘b’ 109 219 500 0.5 n=4

Model from [16] 109 184 549 0.46 n/a
∗ indicates peak one-way values.
†PNP refers to the manual ‘pick and place’ method of placing materials
in the actuator fabrication.
‡PS refers to the ‘pre-stacked’ method of material placement described
in [16].

frequencies of interest (1− 150 Hz). Force data is recorded
on a 6-axis force/torque sensor (ATI Nano-17Ti) and free
deflection is recorded using a camera and vision tracking
(PixeLINK PL-B741F and Xcitex-ProAnalyst). The base of
the actuator is clamped in a reusable aluminum mount.
Compared to previous methods in [13], this clamp reduces
parasitic bending at the base of the actuator. Furthermore it
is shown in [16] that parasitic compliance can also occur
if the interface between the base and the PZT plate is
not reinforced. These two improvements are made to the
actuators from [13] and are shown in the PNP ‘a’ of Fig.
2. The PS ‘a’ and ‘b’ actuators in Fig. 2 are both machined
from a pre-cured composite laminate, the difference being
that, as in [16], PS ‘b’ uses an alumina base and tip (instead
of FR4) and has carbon fiber (instead of CA glue) ‘bridges’
at the PZT-Alumina interface. The free deflection of these
improved actuators is 219µm and the blocked force is
500mN. A full summary of the actuators discussed is shown
in Table II.

The energy density of the actuators is calculated as the
area under the force-displacement curve shown in Fig. 2.

Du =
δfFb
2ma

(1)

This convention is chosen to represent the energy available
from the actuator to act on the HAMR transmission. Note
that this value is scaled by a factor of 1

4 compared to [15] and
[16] to more appropriately describe operation of the HAMR
transmission which can be approximated as a linear spring
load in the quasi-static regime.

Since the PS ‘b’ actuators maximize energy density and
agree with the model from Jafferis et al., this fabrication
method is used in the design of future actuators. In particular,
we re-size the actuators in section V-B using the model in
[16]. These actuators are described as the new geometry
actuators in Table I. This type of redesign was previously not
possible as there was no theoretical framework explaining the
behavior of the PNP ‘a’ and PS ‘a’ actuators.

IV. FLEXURE MODEL

There are three primary types of compliant flexures em-
ployed in the design of multi-layer composite microrobots:
uncastellated flexures, castellated flexures and mirrored-
castellated flexures (see Fig. 3). Adding castellations creates
a more well defined axis of rotation and increases the
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Fig. 3. The top row depicts a top view of three different flexure designs
used in microrobots. The bottom row represents the cross section taken at
the indicated dotted red lines. A perspective view of an uncastellated flexure
is shown on the left.

stiffness of the flexure while maintaining the same maxi-
mum deflection from the uncastellated case. These compliant
flexures can be approximated as small-length flexural pivots
and are assumed to be loaded in pure bending (see [20] for
details). The bending stiffness of uncastellated flexures can
be estimated theoretically from simple beam theory, as shown
in Eq. 2:

k =
Ekwt

3

12l
(2)

Ek is the Young’s modulus of Kapton (2.5 GPa) [21], w is
the width of the flexure, t is the thickness, and l is the length.
These dimensions are defined in Fig. 3. We hypothesize that
the stiffness of castellated hinges will have a similar form
to Eq. 2 for some effective length, leff : l − lc ≤ leff ≤ l,
where lc is the castellation length defined in Fig. 3.

In the following subsections, we experimentally validate
Eq. 2 for the stiffness of uncastellated Kapton flexures and
develop a theoretical formula for the torsional damping
constant of uncastellated flexures. These two equations de-
termine a map between an uncastellated flexure’s geometry
and its dynamic properties that can be used to inform design.
We also determine leff for the mirrored-castellated flexures
used in HAMR, which vary only in width.

A. Experimental flexure characterization

We use the motion of a damped harmonic oscillator (a
physical pendulum) with the Kapton flexure of interest as
the pivot to determine the stiffness (k) and damping (b) for
the flexure. This test is preferable to a static force/deflection
experiment because we can determine b from the decay
envelope of the oscillation. The experimental setup is shown
in Fig. 4. An electromagnet is energized, and holds the
pendulum. A servo then moves the electromagnet and pen-
dulum along the arc anchored by the center of the flexure
to an initial angle between 5 and 15 degrees. The magnet
is de-energized and a high speed camera (Phantom Miro
M/R/LC310) is triggered to capture the motion of the pen-
dulum. This procedure ensures that the oscillations remain
small, that off-axis loading is minimized, and that the initial
velocity of the pendulum is zero. Note that the experiments
were run in a vacuum of 24 in-Hg to eliminate the effect of
aerodynamic damping. Though this experimental setup is an
improvement over static force/deflection tests, there are a few

Control
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Fig. 4. Experimental setup (left) and schematic of experiment initial
conditions (right).

limitations that will be addressed in future work. Namely, we
can only study the hinge behavior at the natural frequency
of pendulum and for small angles; therefore, we cannot fully
span the range of actuation frequencies for HAMR and we
cannot determine k or b for large deflections.

Since the angle of oscillation is kept small, the motion of
the pendulum is described by a linear ordinary differential
equation in its angle. From this equation, we can extract
experimental values for stiffness (km) and damping (bm).

bm = 2ζωnIp (3)

km = Ipω
2
n −mgLcm (4)

Here, ζ is the damping ratio, wn is the natural frequency,
g is the acceleration due to gravity, Ip is the inertia of the
pendulum about the pivot (center of flexure), m is the mass of
the pendulum, and Lcm is the distance between the pivot and
the center of mass. The mass related quantities were obtained
from a Solidworks model of the pendulum. The frequency
of oscillation (ωd) was obtained by finding the average time
between vertical crossings of the oscillating pendulum, where
the position was determined using vision-based tracking. A
least squares fit to the logarithm of decaying oscillation
amplitudes was used to find decay rate (σ). The natural
frequency is then

√
σ2 + ω2

d and the damping ratio is σ/ωn.

B. Results

We tested 25 different uncastellated flexure geometries
varying in width from 0.8 mm to 6 mm, varying in length
from 30 µm to 2 mm, and for four different Kapton thick-
nesses: 7.5 µm, 12 µm, 25 µm, and 50 µm. We took at least
two trials per flexure, and the data displayed is the average
of these trials. Since Kapton is a polymer, we expected it
to exhibit visco-elastic behavior that would manifest itself
in terms of a frequency dependent damping constant. In
particular, we expect it to follow the formula for a frequency
dependent dashpot given in [22], that is

b(ω) =
kη(ω)

ω
=
η(ω)Ekwt

3

12lω
(5)

Here ω = ωd is the frequency of oscillation of the pendulum,
and η(ω) is the frequency dependent lost tangent of the
material. We approximate η(ω) with a single value η. The
results from these experiments are shown in Fig. 5. We
normalized km by

y =
12l

t3
km (6)
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Fig. 5. Flexure test results. Best fits for stiffness (a) and damping (b) for
uncastellated hinges (n=25). Best fit for stiffness (c) and damping (d) for
mirrored-castellated hinges used in HAMR’s transmissions (n=7).

causing the data to collapse onto a line of the form y =
(Ek)mw, where (Ek)m is the experimentally determined
Young’s modulus of Kapton. We obtained the best fit in the
least squares sense, with R-squared value equal to 0.90 and
(Ek)m = 2.56 GPa (2.3% different from the value in [21]).
Similarly, we normalized bm by

z =
12lωd
t3

bm (7)

Once again, the data collapsed onto a line of the form z =
ηm(Ek)mw, where ηm is our experimental estimate of the
loss tangent. The R-squared value of this fit is 0.83, and we
calculated ηm = 0.05 using the value of (Ek)m determined
above. The value of ηm is within the range of loss factors
for polymers: 0.01− 0.1 [23].

In addition, we tested the castellated flexures used in
HAMR. All nine of these flexures were mirrored-castellated,
25 µm thick, 120 µm long with 100 µm long castellations,
and the width was varied between 0.8 mm and 2 mm to
achieve different stiffness and damping. We took at least two
trials per flexure, and the data shown in Fig. 5 is the average
of these trials. Since the only variation was in width, km was
not normalized before plotting against width. The R-squared
value of the best fit was 0.96. We used (Ek)m and Eq. (2)
to determine that the effective length of these hinges was
of leff = 66µm. We normalized bm by wd and plotted it
against width. We found the line of best fit with R-squared
equal to 0.97. We used Eq. (5), (Ek)m, leff to determine
η′m = 0.08, again within the range for polymers. Note that
ηm is not exactly equal to η′m because the loss tangent is
generally a function of frequency and the mean frequency
of oscillation (∼ 31 rps) for the seven HAMR hinges is
different from that of the 25 uncastellated hinges (∼ 40 rps).

TABLE III
FLEXURE VALUES USED IN MODEL

Hinge w(mm) km
†(µN-m/rad) bmωd

†(µN-m-s)
S1 1.74 88.4 6.8
S2 0.80 35.0 3.2

S3, FB3 0.64 33.3 2.5
L1 1.64 89.8 6.8
L2 0.80 31.9 2.7

L3, FB1 1.23 65.4 5.2
FB2 2.00 115.0 8.9

† Values determined from experimental lines of best fit and
using Eqs. (2) and (5) with leff = 66µm and η′m = 0.08.

The empirical best fits are used in the transmission model
to determine the damping and stiffness of the nine Kapton
flexures and these values are shown in Table III. Though
we do not explore the effects of varying length, thickness,
or the castellation geometry on leff , we now quantitatively
understand how to achieve a specific stiffness and damping
for mirrored-castellated flexures by varying the width.

The experimental process and equations described in this
section can be used to understand the dynamic properties of
small-length flexural pivots, and the specific experimental fits
derived are valid for a wide range of Kapton flexural pivots.

V. QUASI-STATIC MODEL VALIDATION AND REDESIGN

The transmission model developed in sections II-IV is
validated against experimental data taken from HAMR trans-
missions and is used to improve the robot’s performance.
Two versions of HAMR are considered. HAMR-V2.0 has the
same transmission as HAMR-VP from Baisch et al., how-
ever, the swing DOFs are no longer contralaterally coupled.
This enabled full characterization of a single transmission
before considering the effect of swing DOF coupling. The
newest version of HAMR (described in section V-B) is based
on the model and is referred to as HAMR-VI.

A. Quasi-static Validation

The model was validated against two HAMRV-2.0 and
HAMR VI transmissions in the quasi-static regime (1 − 10
Hz) using two different criteria: the trajectory of the foot,
and the transmission’s static force/deflection curves.

The data for the foot trajectory is recorded using a camera
and vision tracking (Phantom v7.3 and Xcitex-ProAnalyst).
The stiffness and damping constants for the Kapton flexures
used in this transmission are listed in Table III, the lift
transmission ratio (Tl) is 16.5 (T ∗l = 30.8), and the swing
transmission ratio (Ts) is 20.5. The geometric and mass
properties of the 11 linkages are omitted for brevity. These
transmissions were outfitted with the PS ‘a’ actuators, and
driven by 1 Hz 225V peak-to-peak sinusoidal signal. The
tips of both actuators were offset 50µm in the negative y
direction in the model to reflect the pre-load placed on the
transmission during assembly as explained in [13].

The result from this test is shown in the top row of Fig.
6. The model (in blue) closely matches the experimental
data (in dashed-cyan) for the swing DOF shown in (d),
and slightly over-predicts the experimental data for the lift
DOF (c). The lift transmission does not achieve the predicted
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displacement due to losses caused by small misalignments
during fabrication that result in changes in stiffness that are
magnified by the square of the high transmission ratio (T ∗l ).

The experimental force/deflection curves were obtained by
placing the 6-axis force/torque sensor (ATI Nano-17Ti) on
a micro-manipulation stage directly adjacent to the leg for
the swing tests or under the leg for the lift tests as shown in
Fig. 7. The lift (or swing) DOF of the leg was then actuated
using a 0.5 Hz 225 V peak-to-peak sinusoidal signal and
the maximum force in z (or x) was recorded as Fz (or
Fx) in addition to the position of the force sensor, dl (or
ds). The micro-manipulation stage was then moved away
in increments of 127µm, and the test was repeated until
no force was measured. There was a significant off-axis (y)
force exerted by the foot (∼ 30% of the on-axis force) on the
sensor for both the lift and the swing test. Thus, the model
curves were determined by applying both an on-axis force
and the appropriate y force.

The results are shown in Fig. 6(a) for the lift and Fig. 6(b)
for the swing. The lift transmission provided slightly less
force than the model prediction because of the aforemen-
tioned losses due to misalignments. The swing transmission,
however, provided almost 50% less force than predicted. This
is because the off-axis (y) force from the sensor places a twist
moment on the swing flexures s3 and fb3 (as opposed to the
bending moment placed on l3 and fb1). These flexures twist
under this load as the ratio of the twist stiffness (given in
[24]) to the bending stiffness (Eq. 2) of a compliant flexure
is fundamentally limited by Eq. 8.

ktwist
k

=
2

1 + ν
(8)

Here ν is the Possion’s ratio (0.34 for Kapton) [21], and the
ratio is equal to ≈ 1.5 for compliant Kapton flexures. Since
the moment arm for the y force is about 1.5 times longer
than that for the x force, the hinge undergoes a significant
twist deformation that reduces the x force at the foot for the
swing. This deformation, however, is not captured by the
model as we choose to approximate the flexures as single
DOF (bending) pivots, leading to flexures that are infinitely
stiff in the twist direction.

B. Model-based redesign
Based on the improvements made to the actuators in

section III and the discovery that s3 and fb3 were twist-
ing when loaded, we chose to resize the transmission to
improve performance in the quasi-static regime. From Fig.
8 we can see that for a given actuator, work done by the
foot over one cycle increases as the transmission ratio (T )
decreases. The blocked force (not depicted) at the foot is
inversely proportional to the transmission ratio as expected;
however, the free deflection does not increase linearly with
the transmission ratio. This is because the effective stiffness
of the transmission in the actuator frame increases by the
square of the transmission ratio and counteracts the linear
increase in deflection.

Thus, we tried to minimize the transmission ratio, which
can be thought of impedance matching for the infinite load
provided by the ground when HAMR is walking. The length
of the actuators was constrained to < 10 mm to avoid major
design changes, and the free deflection and actuator mass of
HAMR-V2.0’s actuators were maintained.

The redesigned transmission used the “new geometry”
prestack actuators described in Table I. Tl was reduced to
12 (T ∗l = 22.4), and Ts was reduced to 13. The stiffness of
s3 and fb1 was doubled by increasing the width to counteract
the twisting motion mentioned in section V-A. This robot,
named HAMR-VI, was built and the experimental results
were compared against model predictions for the two tests
mentioned in section V-A. The results from the leg trajectory
and force/deflection tests are shown in the bottom row Fig.
6, and serve as another point of comparison for the model.
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TABLE IV
HAMR-VI VERSUS HAMR-V2.0

HAMR d†(mm) F †(mN) Fd (µ J) Fd/Fbδf

V2.0 - Lift 1.3± 0.2 7.2± 1.3 9.4± 2.2 0.14± 0.2
V2.0 - Swing 2.1± 0.2 5.2± 0.3 10.1±1.2 0.17±0.02

VI - Lift 2.2± 0.1 17.7± 0.8 38.9±2.5 0.38±0.04
VI - Swing 2.5± 0.3 13.0± 1.6 32.5±5.6 0.31±0.02

Data are mean experimental measurements (n=2)with ± s.d.
† Maximum one-way values for a single cycle

The experimental foot trajectory for both DOFs and the lift
force/deflection curve match the model as reducing T ∗l and
Ts has made robot less susceptible to manufacturing errors.
The force exerted by the swing suffers from the same issues
discussed in section V-A. Doubling stiffness of s3 and fb3
was offset by the a doubling of the x and y forces.

HAMR-VI performance demonstrates that the model was
used to drastically improve the transmission in the quasi-
static regime. The two robots are compared in Table IV.

C. Payload Carrying Performance

The force data from section V-B suggests that the payload
carrying capacity of HAMR-VI should increase by more than
a factor of two since the individual leg lift force increased
from 7.2mN to 17.7 mN. Payload tests are performed by
adding discrete weights on top of the robot and running
HAMR at gait frequencies up to 10 Hz. The average velocity
of the robot is tracked using an overhead camera and
visual tracking (Phantom v7.3 and Xcitex-ProAnalyst) and is
summarized in Fig. 9. The gait and the driving scheme used
is consistent with the tests in [3] which uses a trot and a 200
V peak-to-peak drive signal. These experiments demonstrate
that HAMR-VI is capable of carrying 2.9 g. The maximum
payload capacity is increased by 1.6 g from HAMR-V2.0
to HAMR-VI, a 114% increase normalized by percentage of
the body weight with the nominal weights for HAMR-V2.0
and HAMR-VI being 1.41 g and 1.44 g, respectively. Note
that the percent increase is only 91% compared to HAMR-
VP from [3] since the nominal weight of HAMR-VP is 1.23
g, but it has the same payload carrying capacity as HAMR-
V2.0.

Locomotion at all frequencies and payloads with HAMR-
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Fig. 9. Payload tests for HAMR-VP and HAMR-VI at 200V in the quasi-
static regime. Each curve depicts HAMR’s speed versus weight for different
quasi-static actuation frequencies. Payload results from HAMR-VP (Baisch
et al.) shown in faded, dashed lines.

VI is faster than HAMR-V2.0 with the exception of unloaded
and minimally loaded trials at 10 Hz actuation frequencies.
This is due to the body dynamics which causes the robot
to bounce and inhibits forward locomotion. In HAMR-VP,
this transition to instability occurred only at frequencies
greater than 10 Hz. The reason for this shift is likely due
to the increased leg force and deflection which causes an
earlier transition to these dynamic effects. A full high speed
characterization is left to future work where the presented
dynamic model will be extended to a dynamic walking
model.

VI. DYNAMIC VALIDATION

We validated the model in the dynamic regime for HAMR.
Evidence from [3] suggests that the dynamics of the trans-
mission can be approximated as that of two decoupled, sec-
ond order, linear, single input, single-output sytems, allowing
us to represent each with a bode plot. Therefore we compare
the frequency response of two HAMR-V2.0 and HAMR-
VI transmissions against the model. The transmissions were
driven by a linear chirp between 1−130Hz for HAMR-V2.0
and 1 − 140Hz for HAMR-VI at voltages between 50 and
60V. The position of the foot is recorded using a camera and
vision tracking (Phantom v7.3 and Xcitex-ProAnalyst), and
the results are shown in Fig. 10.

The model accurately predicts the resonant frequency of
the lift DOF transmissions. The predicted swing resonant
peak, however, is at a higher frequency due to the twist loads
placed by the inertia of the leg on hinges s3 and fb3. The
model over-estimates the quality factor for both the lift and
the swing DOFs. This is most likely due to the fact that the
η′m for the Kapton flexures was estimated for frequencies
between 1 − 10 Hz. Since η′m is a function of frequency,
these estimates are less accurate near resonance.

Overall, the model represents the high frequency dynamics
of the robot well. The shape of the bode plots show that the
transmission can be represented well by two SISO second
order systems (lift and swing) that map drive voltage (linearly
related to actuator Fb) to displacement (δ) at the foot.

VII. CONCLUSION

A dynamic model of the HAMR transmission is developed
from first principles and is compared against experimental
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data. This model is used to inform the design of HAMR-VI,
which outperforms HAMR-V2.0 in the quasi-static regime in
terms of work done by the foot, speed, and payload capacity.
More generally, we present a method for modeling flexure
based microrobots and demonstrate that such models are
useful in understanding and modifying the behavior of these
complex robots. Furthermore, the methods and equations
used to characterize the Kapton flexures can be used to
characterize flexural pivots made from different materials,
and the specific fits presented can be used as design and
analysis tools by those working with Kapton flexures.

This work, however, is just a first step towards a more
complete understanding of these flexure-based microrobots.
Future work includes characterizing the behavior of the
Kapton flexures at higher frequenices and larger angles using
a dynamometer. We also intend to use the design principles
outlined in section V-B to define a formal optimization to
maximize transmission efficiency. Finally, the extended goal
is to incorporate this model into a full-body locomotion
model for HAMR that can be used for design and control in
both the quasi-static and dynamic regimes.

APPENDIX A

ψl2 = ψl3 − ψl1 (9)
ψs2 = ψs3 − ψs1 (10)

~lG1→l2 −~lG2→l2 = ~0 (11)
~lG1→s2 −~lG2→s2 = ~0 (12)

v̂x · x̂− 1 = 0 (13)
v̂y · ŷ − 1 = 0 (14)
v̂z · ẑ − 1 = 0 (15)
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