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Abstract— We present a hybrid differential dynamic pro-
gramming (DDP) algorithm for closed-loop execution of ma-
nipulation primitives with frictional contact switches. Planning
and control of these primitives is challenging as they are hybrid,
under-actuated, and stochastic. We address this by developing
hybrid DDP both to plan finite horizon trajectories with a few
contact switches and to create linear stabilizing controllers.
We evaluate the performance and computational cost of our
framework in ablations studies for two primitives: planar
pushing and planar pivoting. We find that generating pose-to-
pose closed-loop trajectories from most configurations requires
only a couple (one to two) hybrid switches and can be done in
reasonable time (one to five seconds). We further demonstrate
that our controller stabilizes these hybrid trajectories on a real
pushing system. A video describing our work can be found at
https://youtu.be/YGSe4cUfq6Q.

I. INTRODUCTION

Complex manipulation tasks can often be decomposed into
a sequence of simpler behaviors. For example, picking a
credit-card off a table may consist of a pull to cantilever
the card followed by a grasp to acquire the card. In part
motivated by this observation, researchers have studied ma-
nipulation behavior segmented into manipulation primitives
such as grasping, pulling, pushing, or pivoting.

These primitives are often used to facilitate planning and
control; however, defining these primitives, planning within
a primitive, and scheduling primitives are all current areas of
research. One approach is to use narrowly defined primitives
that are simpler to plan and control at the expense of needing
more of them; for example, when every contact mode/type is
a primitive [1]. On the other hand, complex, more expressive
primitives often incur a higher computational cost and can
be challenging to realize on a physical system. An exteme
case is when all possible mode sequences are considered in
the development of a single behavior [2], [3].

This work proposes a fast planning and control framework
that supports a small number of hybrid switches for prim-
itives of moderate complexity with underactuated frictional
dynamics. Switching contact formations within a primitive
increases its expressiveness, which can reduce the number of
primitives needed and, consequently, ease their scheduling.

Contributions We develop an algorithm for executing ma-
nipulation primitives with frictional contact switches. Our
approach extends input-constrained differential dynamic pro-
gramming (DDP) to handle hybrid dynamics. We plan finite-
horizon trajectories while considering a small number of
contact switches (up to four) within a reasonable amount
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of time (one to five seconds). We also present a numerical
study on the convergence properties and computational re-
quirements of our algorithm for two manipulation primitives:
planar pushing and planar pivoting. Our experiments find that
• The ability to select and switch contact locations is key

to the success of a primitive.
• Only one to two contact location switches are needed

to converge from most initial configurations.
Finally, we show that our framework can plan and control
hybrid trajectories on a real planar pushing system.

Paper Structure We begin by reviewing the basics of DDP,
extensions to handle constraints, and our hybrid algorithm in
Sec. III. We then derive the motion models for planar pushing
and pivoting in Sec. IV. Section V describes simulation
studies that evaluate the success rate and computation time
of the algorithm for these two primitives. We experimentally
validate the algorithm for the planar pushing primitive in
Sec. VI, and finally, we summarize the results, limitations,
and directions of future work in Sec. VII.

II. RELATED WORK

In this section we discuss some related research on ma-
nipulation primitives and DDP.

Manipulation Primitives There is a long history in robotic
manipulation of developing the mechanics of and planning
algorithms for primitives. Mason [4] introduced the mechan-
ics of planar pushing, which have since been studied by a
number of researchers [5], [6], [7]. This line of work has been
extended to many other primitives, including prehensile-
pushing [8], tumbling [9], pivoting [10], [11], [12], scoop-
ing [13], [14], tilting [15], and dynamic in-hand sliding [16].

Researchers have also focused on sequencing primitives
to achieve complex manipulations [17], [18], [19], [20],
[21]. For example, Toussaint et al. [22] use a few kine-
matic primitives to realize diverse set of behaviors; however,
this approach is only verified in simulation. Woodruff et
al. [1] treat each contact formation as a different primi-
tive. They then execute closed-loop dynamic motions with
a fixed primitive-schedule using a planar manipulator in
a low-gravity environment. Our framework balances these
approaches and is similar to that of Hou et al. [12], who
develop a planner for two moderate-complexity primitives
and demonstrate pose-to-pose re-orientation on a physical
system.

Differential Dynamic Programming DDP is an iterative,
indirect trajectory optimization method that leverages the
structure in Bellman’s equation to achieve local optimality.

2020 IEEE International Conference on Robotics and Automation (ICRA)
31 May - 31 August, 2020. Paris, France

978-1-7281-7395-5/20/$31.00 ©2020 IEEE 6759

Authorized licensed use limited to: MIT Libraries. Downloaded on December 02,2020 at 17:56:07 UTC from IEEE Xplore.  Restrictions apply. 



Originally developed by Jacobson and Mayne [23] for un-
constrained systems, it has since been extended to systems
with box input constraints [24], linear input constraints [25],
and non-linear constraints on input and states [26].

Relevant to this work, Tassa et al. [27] and Mordatch et
al. [28] use DDP with smoothed contact models to plan and
stabilize trajectories for legged robots. Yamaguchi and Atke-
son [29] apply DDP to the problem of planning for graph-
dynamical systems, and they use a sample based approach to
determine the mode sequence. Moreover, Pajarinen et al. [30]
consider DDP for planar pushing, and they optimize over a
continuous mixture of discrete actions that is forced back into
fully discrete actions at convergence. Our work improves on
these approaches by considering exact rigid-body frictional
contacts, determining the mode schedule using DDP, and
retaining the anytime property of the algorithm.

III. HYBRID PLANNING AND CONTROL

We first review the basics of DDP (Sec. III-A) and its
extension to input-constrained systems (Sec. III-B). We then
describe our hybrid DDP algorithm in Sec. III-C.

A. DDP Pereliminaries

Consider a discrete-time dynamical system of the form

xk+1 = f(xk,uk) (1)

where f is a smooth function that maps the system’s state
(x ∈ Rn) and control input (u ∈ Rm) to the next state. The
goal is to find an input trajectory U := {u0,u1, . . . ,uN−1} that
minimizes an additive cost function,

J(x0,U) = l f (xN)+
N−1

∑
k=0

l(xk,uk). (2)

Here k is the time-step, l is the running cost, l f is the
final cost, N is the time-horizon, x0 is the initial state, and
x1 . . .xN are determined by integrating (1) forward in time.
We can define the optimal cost-to-go at the k-th time-step
using Bellman’s equation [31],

Vk(xk) = min
uk

[l(xk,uk)+Vk+1(f(xk,uk))], (3)

with the terminal condition VN(xN) = l f (xN).
To handle the non-linearity in (3), DDP iteratively opti-

mizes a quadratic approximation near an initial trajectory.
The algorithm starts with a forward pass that integrates
(1) from an initial state x0 using a current guess of the
input trajectory U. This is followed by a backward pass that
computes a local solution to (3) using a quadratic Taylor
expansion to iterate on the value of U. This sequence of
forward and backward passes is repeated until convergence.

The Taylor expansion of the argument of (3) about a
nominal (x,u) pair is given by

Q(δx,δu) = l(x+δx,u+δu)− l(x,u)
+Vk+1(f(x+δx,u+δu))−Vk+1(f(x,u)). (4)

Algorithm 1: Input constrained DDP

1 initialize ← x0,U0
2 while not converged do
3 VN ← l f (xN)
4 for k = N−1 to 0 do
5 Qk(δxk,δuk)← (5)
6 k← solve QP (9); K← see [25]
7 δuk← k+Kδxk
8 Propagate value ← (7)
9 end

10 x̂0← x0
11 for k = 0 to N−1 do
12 ûk← ProjectFeasible

(
uk +k+K(x̂k−xk)

)
13 x̂k+1 = f(x̂k, ûk)
14 end
15 X← X̂, U← Û
16 end

The quadratic approximation of Q can be written as:

Q(δxk,δuk)≈
1
2

 1
δxk
δuk

T  0 qT
x qT

u
qx Qxx Qxu
qu QT

xu Quu

 1
δxk
δuk

 , (5)

where the block matrices are functions of Vk+1, l, f, and their
first and second derivatives [24]. The control modification is
obtained by minimizing (5) with respect to δu for some state
perturbation δx:

δu∗ =−Q−1
uu (qu +QT

xuδx) = k+Kδx, (6)

where k = −Q−1
uu qu is the feed-forward control and K =

−Q−1
uu QT

xu is the feedback gain. Substituting this for δu in
(5) gives a quadratic model for V

∆V =
1
2

kT Quuk

Vx = qx−KT Quuk
Vxx = Qxx−KT QuuK. (7)

The backward pass initializes the quadratic approximation
of V with l f (xN) and its derivatives, and then recursively
computes (6) and propagates the value approximation (7).

The algorithm then integrates (1) to compute a new
trajectory, completing one iteration. The control during this
forward pass is set to u + δu∗ with δxk taken as the
difference between xk across consecutive iterations. Note that
Quu is regularized to ensure that Q−1

uu exists and a line-search
over k keeps δu and δx small to ensure cost-reduction. These
steps enable convergence from an arbitrary initialization [24].

B. Input Constrained DDP

Now consider a system where the control inputs are
linearly constrained by inequality (or equality) constraints:

A(xk)uk ≥ b(xk). (8)

Here A and b are potentially nonlinear functions of the
state. This class of constraints can represent both planar
friction and force-balance constraints for a fixed contact
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Fig. 1. Planar pushing with four sticking contacts (P0, P1, P2, P3) at the
center of each side. Only one contact can be active at a time, and the active
contact force (fi, i ∈ {0,1,2,3}) must lie within its friction cone (FCi).

mode. The DDP algorithm is modified in two ways for
these constraints [25]. First, (6) is replaced by a constrained
quadratic program (QP) evaluated at the nominal x:

min
δu

Q(0,δu)

s.t. A(x)(u+δu)≥ b(x) (9)

The solution to this QP gives the value of the feed-forward
control k satisfying the input constraints. We then consider
the state variation δx when solving for the feedback gain K.
Details on this are given by Murray and Yakowitz [25].

Second, even though k satisfies the input constraints, the
new control computed using during the forward pass (Line
12, Alg. 1) can violate feasibility. Consequently, it must
be projected onto the constraint set. When A and b have
a simple geometric representation (e.g., a box or a cone),
we can algebraically project the new control input onto the
feasible set. In other cases, we solve another QP detailed
by Murray and Yakowitz [25]. The input-constrained DDP
algorithm is outlined in Alg. 1.

C. Hybrid DDP

We extend input-constrained DDP to systems with hybrid
switches. We use DDP as a subroutine to (a) explore and rank
all feasible mode sequences and (b) optimize the trajectory
and feedback law associated with the best mode sequence.
In addition to the initial state and input trajectory, the user
can specify the maximum number of hybrid switches (Ns)
and the set of hybrid modes (M ) of dimension M.

Our algorithm first builds a depth Ns + 1 tree of length-
Ns possible sequences of contact states. The number of
leafs in the tree is upper-bounded by NM

s . Each leaf is a
trajectory associated with a fixed contact mode sequence
with the Ns switch locations distributed evenly along the
planning horizon (N). We use input-constrained DDP with
a small iteration limit to optimize each leaf in the tree and
approximate its cost. We then select the leaf with the lowest
cost and fix the mode sequence to that of the selected leaf.
Finally, we optimize the trajectory and controller associated
with the best leaf using input-constrained DDP (Alg 1).

For computational efficiency, we initialize DDP with in-
puts that result in static equilibrium and prune the tree
during exploration by eliminating trajectories that cannot

θ

f 1

P2

P1

P0

P3
FC1

f 0

FC0

g

Y

X

Fig. 2. Planar pivoting in the gravity plane with the pivot at the lower
left corner (P0). We consider three sticking contacts at the other corners
(P1,P2,P3). Only one contact is active at a time, and the ground-reaction
(f0) and active contact (fi, i ∈ {1,2,3}) forces obey Coulomb friction.

satisfy static equilibrium after a contact switch. The hyper-
parameters of our algorithm (explored in Sec. V) are the
maximum number of hybrid switches (Ns), the set of hybrid
modes (M ), the planning horizon (N), and the maximum
number of DDP iterations during tree generation (Ni).

In summary, our algorithm can be thought of as an
exhaustive tree-search over mode sequences with pruning
based on static equilibrium.

IV. MANIPULATION PRIMITIVES

Here we derive the equations-of-motion (EOM) for the
primitives used in this work: quasi-static planar pushing
(Sec. IV-A) and dynamic planar pivoting (Sec. IV-B). Our
choice of primitives is meant to illustrate that our approach
handles manipulation in the horizontal and gravitational
planes, as well as, quasi-static and dynamic systems.

A. Quasi-static Planar Pushing

We consider quasi-static pushing in a horizontal plane
with four potential (only one active at a time) sticking point
contacts (Fig. 1). The object’s state is x = [x,y,θ ]T , where x
and y are the position of its center-of-mass (COM) and θ is
its orientation. The discrete-time, quasi-static EOM are

xk+1 = xk +∆tẋk, (10)

where ẋk is the object’s twist at time-step k and ∆t is the
time step’s duration. Using force balance and a ellipsoidal
approximation [32] of the limit surface [33], we can write

ẋk = R(θ)L(Ji)T fi
k. (11)

Here i ∈ {0,1,2,3} is the index of the active contact, fi is
the active contact force in the body-frame, Ji is the Jacobian
for the active contact, R is the rotation between body and
world frames, and L is the gradient of the limit surface w.r.t
the support wrench. Hogan et al. [34] give further details.

The i-th contact force must lie within its friction cone
(FCi) for sticking contact, and we upper-bound the normal
contact force by Ni

max. In a frame whose positive x-axis is
aligned with the contact normal (i.e., the contact frame),

0≤ f i
n ≤ Ni

max

−µ f i
n ≤ f i

t ≤ µ f i
n. (12)
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(a) Left pusher (b) Left, top, & right

20 cm

Fig. 3. Pushing trajectories from eight initial conditions. The goal is a
solid gray square, contact forces are drawn with black arrows, and the left
side of object is shown in blue. Successful (unsuccessful) trajectories are
depicted in green (patterned orange). The green shaded trajectory in (b) has
a contact switch.

Here ( f i
n, f i

t ) are the normal and tangential components of fi

in the contact frame, and µ is the coefficient of friction.

B. Dynamic Planar Pivoting

We also consider dynamic pivoting in the gravity plane
about a sticking frictional pivot with the ground (Fig. 2).
The object is rotated about this pivot by sticking contacts at
one of the other three corners. Each contact is treated as a
point-on-line contact with the line fixed at 45◦ with respect
to both sides of that corner. The object’s state is x = [θ , θ̇ ]T ,
where θ is its orientation and θ̇ is its angular velocity. We
write the discrete-time dynamics of the system as

xk+1 = xk +∆tẋk, (13)

where ẋk = [θ̇k, θ̈k]
T and θ̈ is

θ̈ =
1
I

(
r0×R(θ)T f0 + ri× fi) (14)

from Newton’s angular momentum principle. Here i ∈
{1,2,3} is the index of the active contact, fi is the active
contact force in the body-frame, f0 is the ground reaction
force in the world-frame, RT is the rotation between world
and body frames, I is the object’s mass moment of inertia,
and r0 (ri) is the vector from the COM to the ground (active)
contact. We also constrain the ground reaction force using
Newton’s linear momentum principle,

ṗc = fi +R(θ)(f0 +g), (15)

where g is the gravitational force and ṗc ∈ R2 is the time-
derivative of linear momentum of the COM. Note that ṗc can
be computed in terms of θ , θ̇ , and θ̈ . Finally, we enforce that
all contact forces (active and ground) lie within their friction
cones and place an upper bound on the normal contact forces.

V. NUMERICAL STUDIES

We use our algorithm to plan pose-to-pose trajectories
for both primitives. We present a number of representative
trajectories in Sec. V-A and conduct ablation studies in
Sec. V-B. We use a simple quadratic total cost of the form

J(x0,U) = ∆xT
NQN∆xN +

N−1

∑
k=0

∆xT
k Q∆xk +uT Ru, (16)

(b) Same initial conditions, different # of contacts

10 cm

(a) One contact, different initial conditions

Fig. 4. Pivoting trajectories from two representative initial conditions. The
goal is the gray square, the direction of rotation is clockwise (blue arrow),
the contact forces are drawn with black arrows, and enabled corner-contacts
are marked with purple circles with active contacts filled in. Successful
(unsuccessful) trajectories are depicted in green (patterned orange).

to generate all trajectories. Here ∆x is the distance to the goal
and QN , Q, and R are positive definite diagonal matrices.

A. Simulated Trajectory Planning

Representative planar pushing and pivoting trajectories are
shown in Fig. 3 and Fig. 4, respectively.

Planar Pushing We compute trajectories from eight initial
conditions for enabled contact sets of size one and three
(Fig. 3). The goal is (x,y,θ ) = (0,0,0). Trajectories are
considered successful if the final errors in x, y, and θ are less
than 5 cm, 5 cm, and 5◦, respectively. We set the maximum
number of hybrid switches (Ns) to 1, the maximum iterations
during tree generation (Ni) to 10, and the planning horizon
(N) to 24. Moreover, we use a time-step (∆t) of 0.5 s, a
coefficient of friction (µ) of 0.3 at both frictional contacts,
and allow a maximum normal force (Nmax) of 0.5 N.

With only the left contact enabled (Fig. 3a), as expected,
the algorithm finds solutions for initial conditions that are to
the left of the goal. Note that this corresponds to pure input-
constrained DDP. With three contacts enabled (Fig. 3b),
the algorithm finds trajectories to the goal from all initial
conditions. The algorithm usually only needs to select the
best contact; however, it needs a hybrid switch for one
trajectory (solid green). The mean planning time is 0.40 s
and 0.70 s for one and three enabled contacts, respectively.

Planar Pivoting We compute trajectories for enabled contact
sets of size one, two and three from two initial conditions
(Fig. 4). The goal is θ =10◦ and θ̇ =0 ◦ s−1. Successful
trajectories have final errors in θ and θ̇ that are less than
10◦ and 10 ◦ s−1, respectively. The object’s mass is 0.1 kg
and its density is uniform. We use Ns = 2, Ni = 10, N = 16,
∆t = 0.05 s, µ = 0.5, and Nmax =10 N.

For pivoting, we observe that the ability to reason about
contact switches is important. For example, we cannot pivot
the object from 80◦ to 10◦ with only a single contact enabled
using pure input-constrained DDP (Fig. 4a). Moreover, the
planner finds different mode sequences with more than one
enabled contacts (Fig. 4b). Finally, the mean planning time
is 0.67, 3.12, and 7.30 s for the trajectories with one, two,
and three enabled contacts, respectively.
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Fig. 5. Ablation studies for planar pushing. The top row shows the success rate, and the bottom row shows the planning time for generating the trajectory-
tree (solid) and optimizing the best trajectory (transparent). The error bars depict ± one standard deviation. On the x-axis we show the size of contact set,
and the different colors indicate (a) the maximum number of hybrid switches, (b) the number of DDP iterations used when generating the trajectory-tree
and (c) the total horizon of the trajectory in discrete steps. The labels A-C highlight important trends that are discussed in the text.
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Fig. 6. Ablation studies for planar pivoting following the convention in Fig. 5.

B. Ablation Studies

We also conduct one-dimensional ablation studies that
explore how the hyper-parameters of our algorithm affect
success rate (defined above) and planning time.

Planar Pushing In Fig. 5, we depict the effect of the
number enabled contacts and one other ablation parameter:
(a) number of hybrid switches, (b) number of DDP iterations
during mode selection (tree generation), and (c) the horizon
of the trajectory. When not varied, these parameters are fixed
to Ns = 1, Ni = 5, and N = 24. For each parameter, we
consider all active contact combinations and plan trajectories
from 27 initial conditions for each contact combination.

We find that across all parameters, success rate increases
with the number of enabled contacts (A, Fig. 5). This is
intuitive as allowing for more contact normal directions
increases controllability. This success, however, comes with
an increased planning time (B, Fig. 5), though planning time
is most affected by the number of hybrid switches (Fig. 5a).
We also find that success rate is insensitive to the choice of Ni
(Fig. 5b), and is robust to all hyper-parameter changes with
three or four enabled contacts (C, Fig. 5). Finally, we can
achieve a success rate of 100% with a planning time of ∼1 s
for a number of different hyper-parameter combinations.

Planar Pivoting We present the effects of varying the same
hyper-parameters as above for pivoting in Fig. 6. When not
varied, these parameters are fixed to Ns = 2, Ni = 10, and

N = 18. For each parameter combination, we consider all
contact combinations and plan trajectories from two initial
conditions for object with aspect ratios of 0.5, 1.0, and 1.5.

Similar to the pushing primitive, we find that success rate
increases with the number of enabled contacts (A, Fig. 6);
however, we are only able to reach a maximum success rate
of 0.6-0.7. Interestingly, there is not a corresponding increase
in planning time (B, Fig. 6), though the overall planning time
is higher than for planar pushing due to the more complex
dynamics of pivoting. Our results suggest that the planner
is also more sensitive to the choice of hyper-parameters;
for example, planning over an 18-step horizon outperforms
planning over 12 and 24-step horizons (C, Fig. 6).

VI. EXPERIMENTAL RESULTS

We evaluate our approach on a real planar pushing system.

Experimental Set-up We use an industrial robotic manip-
ulator (ABB IRB 120, Fig. 7). The object rests on a flat
plywood surface and is moved by a metallic rod attached
to the robot. The feedback controller (6) runs at ∼250 Hz,
and the object pose is tracked using a motion capture system
(Vicon, Bonita) at 300 Hz. The object’s physical properties
are described in Sec. V-A, and it has a length of 0.09 m.

We convert the inputs of our model (applied force and
time-step length) into position commands for the robot
manipulator by integrating the following kinematic relation,

xp
k+1 = xp

k +∆tkRJiL(Ji)T fi
k. (17)
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Fig. 7. Robot arena for the planar pushing experiments.

Open-loop
Closed-loop

10 cm
Fig. 8. Open-loop (orange, n=5) and closed-loop (green, n=5) straight-line
pushes. The light-gray box is the initial condition, and the black-outlined
gray box is the goal. The controller significantly reduces error.

Here xp is the Cartesian position of the contact in the world
frame, and R, Ji, and L are defined in Sec. IV-A.

Straight Line Pushing We evaluate the performance of our
controller on straight-line pushing (Fig. 8). We execute five
open-loop and five closed-loop 40 cm pushes. The open-loop
standard deviation (s.d.) in error is x =3.5 cm, y = 4.2 cm,
and θ = 85◦. The controller significantly reduces the closed-
loop s.d. in error to x =0.5 cm, y =0.1 cm, and θ =1.25◦.

Hybrid Pushing We also validate our framework for three
pushes starting from more challenging initial conditions,
with zero, one, and two contact switches (Fig. 9). Our
planner finds pushing trajectories that reach the goal and
are effectively stabilized by the controller. However, slipping
between the pusher and the object results in slightly higher
final pose error than in the straight-line pushing scenario.

VII. DISCUSSION

We summarize the major findings of this work (Sec. VII-
A), discuss some important limitations (Sec. VII-B), and
propose directions for future work (Sec. VII-C).

A. Conclusions

We develop a hybrid DDP algorithm for dynamical sys-
tems with frictional contact and discontinuous switches. Our
approach reasons over a finite horizon, supports a small
number of contact switches, and generates a linear stabilizing
controller. Our approach can quickly generate closed-loop
trajectories that drive most initial conditions to the goal for
the two planar manipulation primitives considered. Finally,
we demonstrate our controller’s ability to track planned
trajectories on a real pushing system.

B. Limitations

Though we can drive any initial condition to the origin
for planar pushing, this is not the case for planar pivoting.
We believe this is due to poor initialization; while static

(b) One switch  x0 = ( 0, 0, �)

(a) No switches:  x0 = (0.5, 0.15, -�/2)

(c) Two switches
x0 = ( 0, 0, -�/2)

10 cm

Fig. 9. Closed-loop pushes with (a) no contact switches, (b) one contact
switch, and (c) two contact switches. The object pose and Cartesian
trajectory is shown in green. Nominal contact locations and applied forces
are shown with purple circles and arrows, respectively. The light-gray box
is the initial condition, and the black-outlined box is the goal.

equilibrium is a fixed-point for quasi-static planar pushing,
it is not the same for dynamic planar pivoting. Furthermore,
though we can accurately track straight-line pushes on a
real system, tracking errors are larger for more complex
trajectories. This is likely a result of slipping between the
pusher and object, and a lower-level controller that enforces
sticking (e.g., [21]) would complement our approach. Finally,
the computational cost of our algorithm increases combi-
natorially with the number of allowed switches; however,
we show that a small number of switches is sufficient for
executing for planar pushing and planar pivoting.

C. Future Work

One extension is to apply our approach on a wider range
of primitives, including pulling, prehensile pushing, rolling,
tilting, etc. This will require both identifying appropriate
mechanics models and adapting the hybrid DDP framework.
In particular, we would like to improve both the initialization
and pruning procedure for our algorithm and to reduce its
dependence on user defined hyper-parameters. We would also
like to explore more sophisticated controllers, as detailed by
Hogan and Rodriguez [6], to reason about contact-sliding
relative to the object.

ACKNOWLEDGEMENTS

This research was supported by an appointment to the
Intelligence Community Postdoctoral Research Fellowship
Program at the Massachusetts Institute of Technology, ad-
ministered by Oak Ridge Institute for Science and Education
through an interagency agreement between the U.S. Depart-
ment of Energy and the Office of the Director of National
Intelligence.

6764

Authorized licensed use limited to: MIT Libraries. Downloaded on December 02,2020 at 17:56:07 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] J. Z. Woodruff and K. M. Lynch, “Planning and control for dynamic,
nonprehensile, and hybrid manipulation tasks,” in 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2017,
pp. 4066–4073.

[2] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” International Journal of
Robotics Research, vol. 33, no. 1, pp. 69–81, Jan. 2014.

[3] Z. Manchester, N. Doshi, R. J. Wood, and S. Kuindersma, “Contact-
implicit trajectory optimization using variational integrators,” The
International Journal of Robotics Research, p. 0278364919849235,
2019.

[4] M. T. Mason, “Mechanics and planning of manipulator pushing
operations,” The International Journal of Robotics Research, vol. 5,
no. 3, pp. 53–71, 1986.

[5] K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, controlla-
bility, and planning,” The International Journal of Robotics Research,
vol. 15, no. 6, pp. 533–556, 1996.

[6] F. Hogan and A. Rodriguez, “Feedback control of the pusher-slider
system: A story of hybrid and underactuated contact dynamics,” in
WAFR, 2016.

[7] J. Zhou and M. T. Mason, “Pushing revisited: Differential flatness, tra-
jectory planning and stabilization,” in Proceedings of the International
Symposium on Robotics Research (ISRR), 2017.

[8] N. Chavan-Dafle, R. Holladay, and A. Rodriguez, “In-hand manipula-
tion via motion cones,” in Robotics: Science and Systems, 2018.

[9] N. Sawasaki and H. Inoue, “Tumbling objects using a multi-fingered
robot,” Journal of the Robotics Society of Japan, vol. 9, no. 5, pp.
560–571, 1991.

[10] A. Holladay, R. Paolini, and M. T. Mason, “A general framework
for open-loop pivoting,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 3675–3681.

[11] Y. Karayiannidis, C. Smith, D. Kragic, et al., “Adaptive control for
pivoting with visual and tactile feedback,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016, pp.
399–406.

[12] Y. Hou, Z. Jia, and M. T. Mason, “Fast planning for 3d any-pose-
reorienting using pivoting,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 1631–1638.

[13] J. C. Trinkle, J. M. Abel, and R. P. Paul, “An investigation of fric-
tionless enveloping grasping in the plane,” The International journal
of robotics research, vol. 7, no. 3, pp. 33–51, 1988.

[14] J. C. Trinkle, “On the stability and instantaneous velocity of grasped
frictionless objects,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 5, pp. 560–572, 1992.

[15] M. A. Erdmann and M. T. Mason, “An exploration of sensorless
manipulation,” IEEE Journal on Robotics and Automation, vol. 4,
no. 4, pp. 369–379, 1988.

[16] J. Shi, J. Z. Woodruff, P. B. Umbanhowar, and K. M. Lynch, “Dynamic
in-hand sliding manipulation,” IEEE Transactions on Robotics, vol. 33,
no. 4, pp. 778–795, 2017.

[17] J. C. Trinkle and J. J. Hunter, “A framework for planning dexterous
manipulation,” in 1991 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 1991, pp. 1245–1251.

[18] H. Terasaki and T. Hasegawa, “Motion planning of intelligent ma-
nipulation by a parallel two-fingered gripper equipped with a simple
rotating mechanism,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 2, pp. 207–219, 1998.

[19] J. Barry, K. K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, Manipu-
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